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a b s t r a c t

Implementing the Generalized Alignment Index (GALI) method of chaos detection we investigate the
dynamical behavior of the nonlinear disordered Klein–Gordon lattice chain in one spatial dimension.
By performing extensive numerical simulations of single site and single mode initial excitations,
for several disordered realizations and different disorder strengths, we determine the probability to
observe chaotic behavior as the system is approaching its linear limit, i.e. when its total energy, which
plays the role of the system’s nonlinearity strength, decreases. We find that the percentage of chaotic
cases diminishes as the energy decreases leading to exclusively regular motion on multidimensional
tori. We also discriminate between localized and spreading chaos, with the former dominating the
dynamics for lower energy values. In addition, our results show that single mode excitations lead
to more chaotic behaviors for larger energies compared to single site excitations. Furthermore, we
demonstrate how the GALI method can be efficiently used to determine a characteristic chaoticity
time scale for the system when strong enough nonlinearites lead to energy delocalization in both the
so-called ‘weak’ and ‘strong chaos’ spreading regimes.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Anderson localization (AL) [1–3] is a general phenomenon
ppearing in linear disordered systems, leading to the exponential
ocalization of the system’s eigenmodes, and in turn to the halt of
preading of initially confined excitations, which has already been
bserved in numerous experimental set-ups [4–11].
In the presence of nonlinearity the dynamics becomes more

omplicated as the system’s normal modes (NMs) couple and
haos appears. Thus, the interplay of disorder and nonlinearity
as attracted extensive attention in theory [12–25], numerical
imulations [26–62] and experiments [63–66]. Two basic models
ave been considered in most of these numerical studies, the dis-
rdered Klein–Gordon (DKG) lattice of coupled anharmonic oscil-
ators and the disordered discrete nonlinear Schrödinger equation
DDNLS), with the latter being mainly used in theoretical studies.

One basic question which attracted extensive attention is re-
ated to the long-time, asymptotic fate of an initially localized
xcitation in a nonlinear disordered lattice. Most numerical stud-
es [26,27,29–32,37,41] showed that nonlinearity eventually de-
troys AL, leading to subdiffusion spreading of the wave-packet,
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which is characterized by a power law increase of its second mo-
ment m2 as m2 ∝ tam , with 0 < am < 1. Nevertheless, indications
of slowing down of such power laws, based on scaling analysis
of numerical results, were reported in [40,49]. In addition, spec-
ulations about the eventual crossover of the dynamics to regular,
quasiperiodic behavior were formulated in [38,44], while rigorous
mathematical arguments about the slowing down of spreading,
or even of its complete halt, were presented in [12,24]. More
specifically, in [12] it was analytically proven that the solutions of
the DDNLS system remain localized for all times for weak enough
nonlinearity, i.e. when the system is very close to its linear limit.
Furthermore, [28] contains a proof that in the DDNLS model, at
least part of the initially localized wave-packet remains localized
and never spreads when the nonlinearity is strong enough to in-
duce a nonlinear frequency shift of some oscillators’ fundamental
frequencies outside of the linear system’s frequency band. This
behavior was described as the ‘selftrapping’ dynamical regime
and has been numerically found not only for the DDNLS system
but also for the DKG model [30,32,34,37,41]. In [14,37,41] two
different spreading regimes were identified, namely the so-called
‘weak’ and ‘strong chaos’ regimes, respectively related to am =

1/3 and am = 1/2 for one-dimensional (1D) lattices [14,34,37].
Theoretical arguments leading to the derivation of these values
were also presented in [17,19,20]. It is worth noting that in

the case of 2D systems the weak and strong chaos regimes are
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espectively characterized by am = 1/5 and am = 1/3 [30,47,61].
espite the fact that the DDNLS model conserves two quanti-
ies (the total energy and the wave-packet’s total norm), while
he DKG system conserves only the system’s total energy, both
odels exhibit the same dynamical regimes. It is worth noting

hat for small energies and oscillation amplitudes an approximate
apping between the two models exists [37,67–70].
Nowadays it is known that wave-packet spreading in non-

inear disordered lattices is a chaotic process resulting to the
ave-packet’s randomization and chaotization [15,26,33,46,48,
3,59,61]. The computation of the maximum Lyapunov Char-
cteristic Exponent (mLCE) [71–73] has been used to quantify
he degree of chaoticity of disordered lattices [39,46,50,53,58,60],
hile a detailed analysis of the time evolution of the mLCE’s
stimator Λ1 in [48,59,61], showed power law decays Λ1 ∝ taΛ ,

with aΛ ≈ −0.25 (−0.3) and aΛ ≈ −0.37 (−0.46) for the weak
strong) chaos case, respectively for 1D and 2D systems. These
ehaviors indicate the decline of the systems’ chaoticity, which
evertheless does not show any signs of a potential crossover to
egular dynamics (which is characterized by aΛ ≈ −1), at least
up to the computationally achieved (long) integration times.

Another open issue is understanding the dynamical behavior
of nonlinear disordered systems in the limit of weak nonlinearity,
when the system is approaching its linear, integrable counter-
part where chaos is not present and AL appears. A basic ques-
tion in this framework is if there exist initial conditions of the
system which lead to chaotic behavior, and more importantly
wave-packet spreading, and if so, how their measure changes
(decreases) as we approach the linear limit.

In [17,20] a critical value of the nonlinearity strength in the
DDNLS system was determined, below which excitations re-
mained localized similarly to the linear case. Based on compu-
tations of the mLCE the probabilistic nature of finding random
initial conditions which lead to chaotic behavior was investigated
in [39] for the DDNLS system, and in [46,50] for the DKG and
related models. There it was found that the percentage of chaotic
orbits decreases and eventually vanishes when the system’s non-
linearity strength diminishes. In the same spirit, an analysis was
performed in [45], which focused on the probability of obtaining
AL below some small but finite nonlinearity level. That study
was founded on a criterion for determining the delocalization
of wave-packets based on computations of their participation
number, whose effectiveness was criticized in [15].

In this work we try to also obtain a more global understanding
of the localized and/or chaotic nature of initially confined excita-
tions (more specifically we consider single site and single mode
excitations) for the 1D DKG model as the system’s nonlinearity
strength (i.e. its total energy) diminishes, tending to zero. We fo-
cus our attention on the DKGmodel as it is computationally easier
than the DDNLS system, which typically requires two orders
of magnitude more computational time for reaching, with the
same accuracy, the same final integration times. We distinguish
between localized and extended chaos, something which was
not explicitly considered in previous publications, discriminating
between energy excitations leading to regular behavior, localized
chaos and to delocalized spreading chaotic wave-packets as was
done for example in [60].

In order to determine the regular or chaotic nature of an orbit
we rely on computations of the Generalized Alignment Index
(GALI) method [74–76], which is an efficient chaos indicator
overcoming the problems of the estimation of the mLCE to clearly
identify chaotic behavior (e.g. slow convergence to its limiting
value; appropriate adjustments, based also on the final integra-
tion time, of its threshold value to point out chaos; power law
decay of the index in the case of a spreading chaotic wave-packet

instead of a saturation to a positive finite value). Furthermore, the i

2

localization or delocalization of a wave-packet is based on the
inspection of its profile, as well as on the time evolution of its
participation number P and its second moment m2. In addition,
exploiting the advantages of the GALI method as an efficient
chaos indicator, we implement it to quantify the decrease of
chaos strength when wave-packets are evolving in the weak and
strong chaos regimes.

The paper is organized as follows. In Section 2 we describe the
Hamiltonian of the DKG model, along with the main numerical
techniques we use in our investigation, emphasizing the mLCE
and the GALI methods. In Section 3 we present numerical results
about the behavior of the DKG model when the nonlinearity
strength is decreased so that the system approaches its linear
limit, both for single site and single mode excitations, while
Section 4 is devoted to the application of the GALI method to
cases belonging to the weak and strong chaos regimes. Finally,
in Section 5 we summarize the findings of our work and discuss
their significance.

2. Model and numerical techniques

2.1. The Hamiltonian model

The 1D DKG lattice model of N coupled anharmonic oscillators
is described by the Hamiltonian

H(u, p) =

N∑
l=1

[
p2l
2

+
ϵlu2

l

2
+ βu4

l +
1

2W
(ul+1 − ul)

2
]

, (1)

where u = (u1, u2, . . . , uN ) and p = (p1, p2, . . . , pN ) are respec-
tively the generalized positions and momenta. The fixed, random
values of the coefficients ϵl are uniformly chosen from the interval
1
2 ,

3
2

]
, determining the on-site potentials (a particular set of ϵl,

l = 1, 2, . . . ,N is referred to as a disorder realization of the
system), while W and β respectively quantify the strength of
disorder and nonlinearity. In our study we consider only two
values for β , namely β = 0, for which the studied system
becomes linear, and β = 1/4, for the nonlinear version of the
model studied in several publications in the past e.g. [30,32,37,
41,45,48,59], and impose fixed boundary conditions, u0 = uN+1 =

0 = pN+1 = 0. The energy hl of oscillator l is given by

hl =
p2l
2

+
ϵlu2

l

2
+ βu4

l +
1

4W

[
(ul−1 − ul)

2
+ (ul+1 − ul)

2] . (2)

In this framework we typically follow the evolution of energy
istributions created by the initial excitation of L central oscilla-
ors at the same energy level hl = H/L by setting pl = ±

√
2H/L,

with randomly assigned signs (for L = 1 we always keep the +

sign) for the excited L sites, and ul = 0 for all sites. Then, for
the normalized energy distribution hl/H we compute its second
moment

m2 =

∑
l

(l − l̄)2
hl

H
(3)

with l̄ =
∑

l (lhl/H) denoting the center of the distribution,
which estimates the wave-packet’s extent of spreading, and its
participation number

P =
H2∑
l h

2
l
, (4)

which quantifies the number of highly excited sites.
As the studied nonlinear version of (1) has always β = 1/4

he system’s total energy H is used to regulate the nonlinearity
trength of the system. Hamiltonian (1) becomes linear when we
eglect the nonlinear term βu4

l in (1) (i.e. taking β = 0), while
ts nonlinear version with β = 1/4 approaches the linear model
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hen the total energy H tends to zero. Setting ul(t) = Ale−iωt ,
l = 1, 2, . . . ,N , and substituting it in the equations of motion
du
dt

=
∂H
∂p

,
dp
dt

= −
∂H
∂u

, (5)

of the linear system (β = 0), we get the linear eigenvalue
roblem

2Al =
1
W

[−Al+1 + (Wϵl + 2)Al − Al−1] . (6)

The system’s NMs are the normalized eigenvectors Aν,l (so that∑
l A

2
ν,l = 1), ν = 1, 2, . . . ,N , and the frequencies of these modes

are the corresponding eigenvalues ω2
ν .

2.2. The maximum Lyapunov characteristic exponent

The set of Lyapunov Characteristic Exponents (LCEs), the so-
called spectrum of LCEs, was introduced by Lyapunov [77], and
became a fundamental tool for investigating the behavior of
dynamical systems [71–73,78]. The spectrum of LCEs of an orbit
in an autonomous Hamiltonian system of N degrees of freedom
consists of 2N values λl, l = 1, 2, . . . , 2N , which measure the
ean exponential rate of growth (or shrinking) of small pertur-
ations of the studied orbit. The LCEs come in pairs of values
ith opposite signs, λl = −λ2N−l+1, and they are ordered as
1 ≥ λ2 ≥ · · · ≥ λN−1 ≥ λN = 0 (see e.g. [73] and references
herein). If at least one LCE is positive, i.e. λ1 > 0, the orbit is
haracterized as chaotic, while if λ1 = 0 (and consequently all
he remaining LCEs are also zero) the orbit is regular.

The LCEs can be numerically obtained as time limits of appro-
riately computed quantities Λi, which are usually referred to as
he finite time LCEs (ftLCEs), i.e.

l = lim
t→∞

Λl, l = 1, 2, . . . ,N, (7)

hich can for example be evaluated by the so-called ‘standard
ethod’ [72,73]. The interested reader can find in [73] more

nformation on the practicalities related to the computation of
he ftLCEs Λi, i = 1, 2, . . . , 2N , along with pseudocodes for the
ctual estimation of λi. In particular, the mLCE λ1 is estimated as
he limit for t → ∞ of the finite-time mLCE (ftmLCE)

1(t) =
1
t
ln

||w(t)||
||w(0)||

, (8)

where w(t) = δz(t) = (δu(t), δp(t)) = (δu1(t), . . . , δuN (t),
δp1(t), . . . , δpN (t)) denotes the phase space perturbation vector
from the orbit z(t) = (u(t), p(t)) at time t . In the case of regular
orbits, Λ1(t) tends to zero following the power law [72,73]

Λ1(t) ∝ t−1, (9)

while for chaotic orbits, it tends to a non zero positive value.
The evolution of an initial deviation vector w(0) is governed

by the so-called variational equations

ẇ(t) =

[
˙δul(t)
˙δpl(t)

]
=
[
J2ND2

H (z(t))
]
· w(t), l = 1, 2, . . . ,N, (10)

here J2N =

[
0N IN
−IN 0N

]
, with IN and 0N being respectively the

dentity and the zero N×N matrices. Furthermore, D2
H (z(t)) is the

N × 2N Hessian matrix whose entries
[
D2

H (z(t))
]
i,j =

∂2H
∂zi∂zj

⏐⏐⏐⏐
z(t)

are evaluated at the position z(t) of the orbit in the system’s
phase space for all i, j = 1, 2, . . . , 2N . The elements of matrix[
J2ND2

H (z(t))
]
in (10) depend on the evolution of the orbit z(t)

but are independent of w(t). Therefore, the set of linear [with
respect to w (t)] Eqs. (10) have to be solved together with the
l e

3

system’s Hamilton equations of motion (5). We note that in order
to estimate for example the first k ≤ 2N exponents, k deviation
ectors have to be integrated, although in our study we will focus
nly on the computation of the mLCE.

.3. The generalized alignment index method

Although the computation of the mLCE is the most widely
sed technique for characterizing the regular or chaotic na-
ure of orbits, its computational drawbacks, like for example
ts slow convergence to its limiting value, led to the develop-
ent of a number of other, efficient chaos detection techniques,
hich make use of the solutions of the variational equations,

ike for example the fast Lyapunov indicator (FLI) and its variants
79–84], the mean exponential growth of nearby orbits (MEGNO)
85–87], the relative Lyapunov indicator (RLI) [88–90], the smaller
lignment index (SALI) [91–93] and its generalization, the GALI
74–76,94].

In our study we will use the GALI method, which was in-
roduced in [74], and proved to be a very efficient chaos de-
ection technique as it has been successfully used for studying
he chaoticity of several dynamical systems, see e.g. [95–100].
ccording to [74] the GALI of order k (GALIk), 2 ≤ k ≤ 2N , is

defined to be the volume of the generalized parallelogram having
as edges k normalized deviation vectors

ŵi(t) =
wi(t)

∥wi(t)∥
, i = 1, 2, . . . , k, (11)

which are initially linearly independent. More specifically its
value is computed as the norm of the wedge product of these
vectors

GALIk(t) = ∥ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t)∥, (12)

where ∥ · ∥ denotes the usual vector norm. We note that the
wedge product in (12) becomes zero and the GALIk vanishes when
the deviation vectors become linearly dependent. Practically the
GALIk can be computed as the product of the singular values vi,
i.e.

GALIk(t) =

k∏
i=1

vi(t), (13)

of the 2N × k matrix W(t) having as columns the coordinates of
the k normalized deviation vectors (11) [75]. Additional practical
information about the computation of the GALIk method can be
found in [101].

The behavior of the GALIk for regular orbits lying on sD torus
(s ≤ N) is given by [75]

GALIk(t) ∝

⎧⎪⎨⎪⎩
constant for 2 ≤ k ≤ s
1

tk−s for s < k ≤ 2N − s
1

t2(k−N) for 2N − s < k ≤ 2N,

(14)

hile for chaotic orbits GALIk goes to zero exponentially fast with
n exponent depending on the first k largest LCEs [74]

ALIk(t) ∝ exp

(
−t

k∑
i=2

(λ1 − λi)

)

≈ exp

(
−t

k∑
i=2

(Λ1(t) − Λi(t))

)
,

(15)

here the values λi of the MLEs are approximated by the related
tMLEs Λi.

In our simulations the equations of motion (5) defining the
volution of an initial excitation (orbit) of the system, along with
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Fig. 1. The time evolution of GALIk (12) (blue curves) and Qk(t) =

−t
∑k

i=2(Λ1(t) − Λi(t)) (red curves) for k = 2, 4, 8 of (a) a regular orbit of
system (1) with W = 3, β = 0, L = 37, H = 3.7 and two chaotic orbits
respectively belonging to (b) the weak and (c) the strong chaos regime, with
W = 3, β = 1/4, L = 37, H = 0.37 and W = 3, β = 1/4, L = 37, H = 3.7, when
the same disorder realization is used in all cases. We note that in all panels
the blue and red curves practically overlap. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

the variational Eqs. (10) for one or more initial perturbations
(deviation vectors) are integrated together using the tangent map
method [102–104] and the two part split order four symplectic
integrator ABA864 [105], which has already proved to be a very
efficient and reliable method for multidimensional Hamiltonian
systems [106,107]. Typically, we perform numerical integrations
up to a maximum time of T = 109 time units using lattices with
up to N = 1000 oscillators, taking care that the evolved wave-
packet does not reach the lattice’s boundaries. In all cases the
integration time step τ is chosen so that the system’s energy (1)
is conserved at an absolute relative energy error⏐⏐⏐⏐H(t) − H(0)

H(0)

⏐⏐⏐⏐ ≲ 10−5, (16)

for all t .
In order to illustrate the behavior of the GALIk method, as well

as its relation to the system’s LCEs in the case of chaotic orbits
(15), we present in Fig. 1 some representative computations of
the index. More specifically, for the same disorder realization we
consider evolutions for three particular cases of (1): a regular
orbit for W = 3, β = 0, L = 37, H = 3.7 [Fig. 1(a)], an
orbit belonging in the weak chaos spreading regime for W = 3,
β = 1/4, L = 37, H = 0.37 [Fig. 1(b)] and a chaotic orbit in
the strong chaos regime for W = 3, β = 1/4, L = 37, H = 3.7
[Fig. 1(c)]. We note that the last two orbits respectively belong to
the cases named W1K and S2K in [59]. In each panel of Fig. 1 we
plot the time evolution of GALIk (blue curves) for k = 2, 4 and
8, along with the quantity Qk(t) = −t

∑k
i=2(Λ1(t) − Λi(t)) (red

curves) appearing in (15). The results confirm the validity of the
relation GALIk(t) ∝ expQk(t) (both for regular and chaotic orbits),
and vividly demonstrate the ability of the index to efficiently
discriminate between the two cases. In Fig. 1(a) all GALIs remain
practically constant in agreement to the first equation of (14),
indicating the regular nature of the orbit (something which is of
course expected as in this case system (1) is linear, as β = 0,
and chaos is not present), while in both Fig. 1(b) and (c) GALIs
eventually tend exponentially fast to zero (reaching extremely
small values), denoting the chaotic nature of these orbits, in
accordance to (15). The higher chaoticity of the strong chaos
case in Fig. 1(c) with respect to the weak chaos one in Fig. 1(b)
becomes also evident by the faster decrease of the GALIs, which
reach the same level of very small values faster than in Fig. 1(b).
This behavior is also in agreement with the fact that the mLCE of
the strong chaos cases reach higher values than the ones in the
weak chaos regime (see Figs. 2(a) and 4(a) of [59]).

The results of Fig. 1 clearly show that GALI2, whose compu-
tation requires the numerical integration of only two deviation
4

vectors, can efficiently determine the chaotic or regular nature of
orbits. We therefore only use GALI2 in the rest of this work to
study the chaotic behavior of system (1). In [74] it was shown
that GALI2 is practically equivalent to the SALI method [91–93],
which has been successfully applied to study the chaotic behavior
in several dynamical systems (see for example [108–116]).

3. Weak nonlinearity

In this section we implement the GALI2 technique to study
the chaotic behavior of the nonlinear lattice system (1) with
β = 1/4, for small nonlinearity strengths (i.e. small H values),
by considering single site and single mode initial excitations.

3.1. Single site excitations

In order to investigate the dynamical behavior of the DKG sys-
tem when its nonlinearity strength (quantified by the total energy
H) decreases, so that the model approaches its linear counterpart,
we perform numerical simulations by initially exciting one (L =

1) central lattice site for different disorder realizations. In all
considered cases we give to this site energy H , setting also ϵl =

for this site in order to put it at the center of the interval
1/2, 3/2] from which all other ϵl values are randomly chosen.
We consider in our study several values of the energy H , ranging
from H = 0.3 to H = 0.003. In addition, trying to understand the
possible influence of the disorder strength on these processes, we
perform simulations both for W = 4 and W = 6.

We classify a particular wave-packet evolution (i.e. an orbit
in the system’s multidimensional phase space) as chaotic if the
corresponding GALI2(t) value is practically zero [more specifically
if GALI2(t) becomes ≤ 10−8] during the integration of the system
p to the final considered time T = 109, while, if this does not
appen, the orbit is considered as non-chaotic/regular. One key
spect of our investigation is the differentiation between localized
haos and extended or spreading chaos. This distinction is based on
he time evolution of the participation number P (4) of the wave-
acket. More specifically, a case is defined as spreading chaos
hen it is chaotic and P eventually does not remain constant,
howing a clear tendency of progressive increase in time. On
he other hand, the system shows localized chaos when GALI2
lassifies it as chaotic and at the same time, P remains practically
onstant, fluctuating around some fixed value.

.1.1. Representative cases
In Fig. 2 representative cases of these three dynamical behav-

ors, namely regular dynamics [left column, panels (a), (d), (g), (j)],
ocalized [middle column, panels (b), (e), (h), (k)] and spreading
haos [right column, panels (c), (f), (i), (l)] are presented for single
ite excitations of different disorder lattices, but for the same
nitial condition, total energy H = 0.02 and disorder strength

= 6, for the nonlinear (β = 1/4) DKG system (1). For each
ase we follow the time evolution of the wave-packet’s second
oment m2 (3) [upper row, panels (a)–(c)], and participation
umber P (4) [second row, panels (d)–(f)] in order to describe
he characteristics of the produced energy distribution profiles,
long with the computation of the orbit’s ftmLCE Λ1 (8) [third
ow, panels (g)–(i)] and GALI2 (12) [lower row, panels (j)–(l)] for
uantifying the system’s chaoticity.
It is worth noting that, as we see from the results of Fig. 2,

ifferent disorder realizations (but for the same set of param-
ters and initial conditions) lead to three different dynamical
ehaviors. In particular, the case presented in the left column
f Fig. 2 corresponds to a regular orbit. In this case the wave-
acket remains localized for the duration of the evolution, as
ts measures of extent, m [Fig. 2(a)] and P [Fig. 2(d)] exhibit
2
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Fig. 2. The time evolution of m2 (3) [(a)–(c)], P (4) [(d)–(f)], Λ1 (8) [(g)–(i)] and
GALI2 (12) [(j)–(l)] for the same single site (L = 1) excitation of the DKG system
(1) for β = 1/4, W = 6, H = 0.02, for three different disorder realizations (one
er column). The disorder realization of the left column [(a), (d), (g), (j)] leads
o a regular evolution, while the one used in the middle [(b), (e), (h), (k)] and
n the right [(c), (f), (i), (l)] column, respectively correspond to localized and
preading chaos. The straight dashed lines in (g), (h) and (i) guide the eye for
lope −1, which characterizes regular dynamics.

luctuations around constant values. The regular nature of this
rbit is clearly reflected in the evolution of the corresponding
tmLCE Λ1 (8) [Fig. 2(g)], which constantly decreases to zero
following a power law Λ1 ∝ t−1 [represented by the straight
ashed line in all Λ1 plots in Fig. 2(g), (h) and (i)], appearing
n the case of regular dynamics, as well as in its GALI2 index
Fig. 2(j)], which remains practically constant as is denoted in the
irst equation of (14).

Results for a simulation where we observe localized chaos is
resented in panels (b), (e), (h) and (k) of Fig. 2. In this case
he wave-packet’s extent remains practically unchanged as m2
Fig. 2(b)] and P [Fig. 2(e)] do not show any signs of increase,
hile Λ1 [Fig. 2(h)] and GALI2 [Fig. 2(k)] show that the trajectory

s chaotic. In particular, Λ1 deviates from the Λ1 ∝ t−1 de-
rease denoting regular behavior [dashed line in Fig. 2(h)] when
og10 t ≳ 6. The chaotic nature of the orbit becomes evident, in
n even more clear way, from the evolution of GALI2 [Fig. 2(k)],
hich abruptly decreases to zero for log10 t > 6, justifying in this
ay our decision to use this index in the following sections for
fficiently identifying chaotic behavior.
In Fig. 2(c), (f), (i) and (l) we present results for a disorder re-

lization leading to an orbit exhibiting spreading chaos. As in the
ase of localized chaos of Fig. 2(b), (e), (h) and (k), the Λ1 deviates
rom the Λ1 ∝ t−1 decay [Fig. 2(i)] and the GALI2 eventually
ecreases abruptly to zero [Fig. 2(l)], indicating the chaotic nature
f the evolution. In addition, the spreading character of the wave-
acket is reflected in the time evolution of both m2 [Fig. 2(c)] and
[Fig. 2(f)], which, after a transient phase of bounded oscillations,
how a clear increase towards the last stages of the simulation.
5

Fig. 3. Normalized energy distributions hl/H at times t = 105 (red curves),
= 107 (green curves), and t = 109 (black curves) for the three cases of Fig. 2
eading to (a) regular evolution [left column of Fig. 2], (b) localized chaos [middle
olumn of Fig. 2] and (c) spreading chaotic behavior [right column of Fig. 2]. In
ll panels the initially excited oscillator at the center of the lattice is denoted
y l = 0. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

In order to obtain a clearer understanding of the spatial evo-
ution of the energy excitation in the three cases of Fig. 2, we
resent in Fig. 3 snapshots of the related normalized energy
istributions, hl/H , l = 1, 2, . . . ,N (note a translation of the
orizontal axis so that the initially excited site at the center of
he lattice is located at l = 0) at times t = 105 (red curves),
= 107 (green curves), and t = 109 (black curves).
In Fig. 3(a) we see that for the regular case of Fig. 2 the three

napshots of the energy distributions practically overlap, having a
ointy shape located at the position of the initial excitation. Thus,
t becomes clear that the wave-packet’s extent does not grow
nd always the same small number of sites are highly excited.
his picture is in agreement with the computations of the second
oment [Fig. 2(a)] and the participation number [Fig. 2(d)] where
oth quantities attain small and practically constant values.
From the results of Fig. 3(b) for the localized chaos case of

ig. 2(b), (e), (h) and (k) we again see that the related energy
istributions remain almost unchanged as time grows, as the
nergy profiles practically overlap, retaining again a pointy shape,
hich nevertheless is somewhat wider than the one in Fig. 3(a).
his larger spatial extent of the localized wave-packet is clearly
eflected on the larger, but bounded, values of m2 observed in
ig. 2(b) with respect to Fig. 2(a), as well as the similar behavior
een for the P results depicted in Fig. 2(e) and (d).
On the other hand, in the case of spreading chaos considered

n Fig. 3(c), the energy distribution clearly grows in width when
ime increases, departing from its initial pointy shape tending to
orm a more extended chapeau-like central region. This means
hat the number of highly excited sites increase in time leading
o the increase of P seen in Fig. 2(f). The expansion of the wave-
acket is also reflected in the growth of the related m2 values in
ig. 2(c).
As a final, technical note we remark that the ability of the

ALI2 method to clearly and efficiently reveal the regular or
haotic nature of the wave-packet’s evolution is practically inde-
endent of the set of the two orthonormal [so that GALI2(0) = 1]
eviation vectors used for its computation. This is clearly seen in
ig. 4 where we plot the evolution of GALI2 for three different
ets of random initial deviation vectors, in each one of the cases
resented in Fig. 2 (results obtained by each set of vectors are
lotted in different color: black, blue and red). In particular, in
ig. 4(a) we present results for the regular case of Fig. 2(j), in
ig. 4(b) we see the evolution of GALI2 for the localized chaos case
f Fig. 2(k), while in Fig. 4(c) the spreading chaos case of Fig. 2(l) is
onsidered. In each panel of Fig. 4 we see that the plotted curves
ither overlap or show a very similar trend.
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Fig. 4. Time evolution of GALI2(t) for three different sets (black, blue and red
curves) of random initial deviation vectors for (a) the regular case of Fig. 2(j),
(b) the localized chaos case of Fig. 2(k), and (c) the spreading chaos case of
Fig. 2(l). The insets show a magnification of the main plots for the time interval
3.9 ≤ log10 t ≤ 6.5. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

3.1.2. Aggregate results
Based on the analysis of the results of Fig. 2 we conduct a

more general investigation of the dynamics of the DKG system (1)
when its energy H decreases. For each considered energy value
we follow the evolution of single site excitations for 100 different
disorder realizations up to a final time T = 109 time units.
Using the corresponding evolution of GALI2(t) we determine the
percentage PC of chaotic cases resulting to GALI2(t) ≤ 10−8

or t ≤ T . Analyzing further these chaotic cases, by checking
heir m2 and P values, we discriminate between localized and
spreading chaotic behavior (as we did for the cases presented in
the middle and right columns of Fig. 2) respectively determining
their percentages PCL and PCS , so that PC = PCL + PCS .

In Fig. 5(a) we see the dependence of PC on the energy H of the
KG system (1) for disorder strengths W = 4 (blue points/curve)
nd W = 6 (red points/curve). For both cases PC increases with
ncreasing nonlinearity strength and it becomes PC = 100% at
high energy whose value depends on the disorder strength,

.e. it is larger for W = 6. On the other hand, approaching the
inear limit of the DKG system by decreasing the energy, we
bserve a decrease of the percentage of chaotic orbits, which
quivalently means that more disorder realizations accommodate
egular behavior. This decrease is more abrupt for W = 4,
escribed by a slope close to 150 [dashed black line in Fig. 5(a)],
han in the W = 6 case, for which the decrease is approximated
y a slope ≈ 120 [continuous black line in Fig. 5(a)]. A clear
endency of PC to become zero for small H values is evident
or both cases, implying that the system’s phase space is almost
ompletely occupied by invariant tori leading to quasiperiodic,
egular motion. These findings are in agreement to the empirical
nd numerical arguments provided in [38] for the infinite random
DNLS model.
It is worth noting that the blue curve (W = 4) is always above

he red one (W = 6) when PC ̸= 100%, indicating that for the
same nonlinearity strength (energy H) more chaos is present for
W = 4. This behavior can be understood in the following way.
A single site excitation results to the excitation of several NMs,
whose nonlinear interaction is responsible for the chaotic behav-
ior of the wave-packet. As the spatial extent of the, nevertheless
localized, NMs increases when W decreases [2,35,62], more NMs
are excited by single site excitations for W = 4 than for W = 6.
On top of that, the wider extent of these NMs lead to stronger
interactions between them and in turn, to higher level of chaos
as is observed in Fig. 5(a). For the same reasons, higher energies
are needed in the W = 6 case to reach the fully chaotic level of
PC = 100%, as more localized NMs (with respect to the W = 4
case) need a stronger nonlinear interaction to lead to well defined

chaotic evolution.

6

Fig. 5. (a) Percentage PC of chaotic orbits for different energy values H of the
DKG model (1) obtained by single site excitations of 100 different disorder
realizations for disorder strengths W = 4 (blue points/curve) and W = 6 (red
points/curve). The continuous (dashed) black line indicates slope 120 (150). (b)
The average [over the chaotic cases of (a)] time TC needed for GALI2 to become
≤ 10−8 vs. H for W = 4 (blue points/curve) and W = 6 (red points/curve). In
both panels data points are line connected in order to facilitate the visualization
of the underlying trends. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. The percentage of cases of Fig. 5(a) exhibiting localized chaos (PCL , brown
points/curves) and spreading chaos (PCS , green points/curves) vs. H for (a) W = 4
and (b) W = 6. In both panels data points are line connected in order to facilitate
the visualization of the underlying trends. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

In Fig. 5(b) we present the dependence on H of the aver-
age time TC needed for the chaotic cases of Fig. 5(a) to clearly
demonstrate their chaotic nature, i.e. the time for which GALI2(t)
becomes ≤ 10−8. We see that for both W = 4 and W = 6, TC
shows a similar behavior: it increases as H decreases approaching
TC = 109 (the final integration time of our simulations) for very
small H values. This, implies that, although the number of cases
exhibiting chaos increases as W decreases, the time need for this
chaos to be observed does not seem to be influenced by W , at
least of course for the two values of W considered here. Definitely
this point deserves further investigation, something which we
plan to address in a future publication by performing a similar
analysis for more W values.

Looking closer to the cases leading to chaos, we distinguish
between localized and spreading chaos by respectively plotting in
Fig. 6 their percentages, PCL (brown points/curves) and PCS (green
points/curves), as a function of the system’s energy H for W = 4
[Fig. 6(a)] and W = 6 [Fig. 6(b)]. For both W values, localized
chaos dominates the dynamics for small energies, but as the
system’s nonlinearity grows the fraction PCS of spreading chaos
cases increases, eventually reaching PCS = 100%, which means
that for strong enough nonlinearities all cases exhibit chaotic
spreading (PC = PCS = 100%).

By comparing the two panels of Fig. 6, we see that for W =

4 the portion of localized chaos cases reaches higher values
compared to the one observed for W = 6. This means that
whenever chaotic behavior appears for W = 6, it predominately



B. Senyange and C. Skokos Physica D 432 (2022) 133154

c
t
a
t
s

3

D
r
t
c
w

w
e
5
ω

4
e
t
(
d
c
[
[
o
d
[
t
f
[
o
e
[
d
r

S
r
p
P
p
o
v
c
l
f

n
m

t
t
(
[
c
t
a

orresponds to spreading chaos. Possibly this happens because
he system’s NMs are more localized than in the W = 4 case
nd so, when their interactions become powerful enough to in-
roduce chaos, they are sufficiently strong to also lead to energy
preading.

.2. Single mode excitations

In order to investigate further the chaotic behavior of the
KG system (1), we complement our study by also presenting
esults for single mode initial excitations. To do so, we order
he NMs in space by increasing value of their center-of-norm
oordinate l̄ =

∑
l lA

2
ν,l, where Aν,l is the amplitude of NM ν,

ith ν = 1, 2, . . . ,N . The NM’s spatial extent has been reported
to be maximized for eigenfrequencies positioned in the middle
of the ω2

ν spectrum [2,10,35]. We therefore initially excite a NM
whose center is located around the middle of the lattice and
whose eigenfrequency ω2

ν lies within the middle one third of the
spectrum [1/2, 3/2 + 4/W ], by attributing to it the total energy
H of the system, while all other modes are not exited at all.

As in the case of single site excitations (Section 3.1.1), we
can find single mode excitations leading to regular or chaotic
(localized or spreading) behaviors. In Fig. 7 we present (in a
similar way to Fig. 2) some representative cases of single mode
excitations, for three different disorder realizations, resulting to
regular dynamics [left column, panels (a), (d), (g), (j)], as well as
to localized [middle column, panels (b), (e), (h), (k)] and spreading
chaos [right column, panels (c), (f), (i), (l)]. In all cases Hamil-
tonian (1) has β = 1/4, W = 6, H = 0.1 and N = 1, 000,
hile the center l̄ and the participation number P of the initially
xcited mode along with its eigenvalue ω2

ν are l̄ ≈ 503.5, P ≈

.1, ω2
ν ≈ 1.285 [left column of Fig. 7], l̄ ≈ 502.4, P ≈ 7.4,

2
ν ≈ 1.458 [middle column of Fig. 7] and l̄ ≈ 500.6, P ≈

.6, ω2
ν ≈ 1.318 [right column of Fig. 7]. The corresponding

nergy distributions are seen in Fig. 8 for t = 0 (blue curves),
= 107 (red curves), t = 108 (green curves), and t = 109

black curves). For the single mode excitation leading to regular
ynamics we see that its energy profile does not practically
hange in time [Fig. 8(a)] and consequently m2 [Fig. 7(a)] and P
Fig. 7(d)] mildly oscillate around constant values, while both Λ1
Fig. 7(g)] and GALI2 [Fig. 7(j)] denote the regular nature of the
rbit. The energy profiles of the localized chaos case [Fig. 8(b)]
o not also practically change in time and m2 [Fig. 7(b)] and P
Fig. 7(e)] fluctuate again around constant values, but now, due
o the motion’s chaotic nature, Λ1 [Fig. 7(h)] eventually deviates
rom the Λ1 ∝ t−1 law [dashed line in Fig. 7(h)] and GALI2
Fig. 7(k)] vanishes for log10 t ≳ 7. Finally, for the presented case
f spreading chaos we see a clear increase in the width of its
nergy distribution [Fig. 8(c)] resulting to the growth of the m2
Fig. 7(c)] and P [Fig. 7(f)] values, accompanied by a significant
eviation of the ftmLCE from the Λ1 ∝ t−1 law [Fig. 7(i)] and a
ather fast and abrupt decrease of GALI2 [Fig. 7(l)].

We also perform a similar analysis to the one presented in
ection 3.1.2 for single site excitations, by obtaining statistical
esults over 100 different disorder realizations. In Fig. 9(a) we
resent results for the dependence of the fraction of chaotic cases,
C , on the system’s energy H for disorder strengths W = 4 (blue
oints/curve) and W = 6 (red points/curve). Similarly to the case
f single site excitations in Fig. 5(a), PC = 100% for high energy
alues, and shows a decrease as H diminishes. This decrease is
haracterized in Fig. 9(a) by a 120 slope (dotted black line) in its
arger extent, although a change to a slower decrease is observed
or small H values (log10 H ≲ −1.5).

Comparing Figs. 5(a) and 9(a) we see that for small enough
onlinearities, so that not all simulations lead to chaos, single

ode excitations result to less chaotic behavior with respect to

7

Fig. 7. Similar to Fig. 2 but for single mode excitations of the DKG system (1)
for β = 1/4, W = 6, H = 0.1, for three different disorder realizations (one per
column).

Fig. 8. Normalized energy distributions hl/H at times t = 0 (blue curves),
= 107 (red curves), t = 108 (green curves), and t = 109 (black curves) for

he three cases of Fig. 7 leading to (a) regular behavior [left column of Fig. 7],
b) localized chaos [middle column of Fig. 7] and (c) spreading chaotic behavior
right column of Fig. 7]. We note that in panels (a) and (b) the curves are very
lose to each other and practically overlap. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this
rticle.)

Fig. 9. Similar to Fig. 5 but for single mode initial excitations. The dotted black
line in (a) indicates slope 120.
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Fig. 10. Similar to Fig. 6 but for single mode initial excitations.

ingle site excitations for the same H value, as in the latter case
ore than one NMs are excited from the beginning. Thus, in the
ase of single site excitations mode-mode interactions are present
rom the beginning of the evolution leading to stronger cou-
ling between modes in the presence of the same nonlineartity
despite the localized nature of the NMs), which in turn leads
o strong chaotic interactions and wave-packet delocalization.
his behavior becomes more pronounced when the NMs’ extend
ncrease (i.e. for smaller W values). On the other hand, in the
ase of single mode excitations, chaos is again introduced by the
onlinear interaction and overlap of NMs, which is in general
eaker because initially only one mode is excited. This leads to
maller percentages of chaotic cases with respect to single site
xcitations for the same energy value [for example, from Figs. 5(a)
nd 9(a) we see that for log10 H ≈ −1 all single site excitations
ractically lead to chaos (PC ≈ 100%), while for single mode
xcitations we observe a weaker chaotic behavior as PC ≈ 55%],
hich also does not seem to depend on the considered values of
as the results in Fig. 9(a) for W = 4 and W = 6 practically

verlap.
The average time TC required for the chaotic cases to reveal

heir nature, i.e. the time needed for GALI2 to become less that
0−8, shows a well defined increase as H decreases [Fig. 9(b)],

which does not seem to depend drastically on the value of
W , similarly to what was observed for single site excitations
[Fig. 5(b)].

Fig. 10 shows the percentages PCL of localized (brown points/
urves) and PCS of spreading chaos (green points/curves) for dis-
order strengths W = 4 [Fig. 10(a)] and W = 6 [Fig. 10(b)]. Unlike
he case of single site excitations (Fig. 6), orbits leading to spread-
ng chaos dominate the portion of chaotic cases compared to
hose where chaos is localized. Furthermore, not large differences
re observed between the W = 4 and W = 6 cases. Again, at very
igh energies (log10 H ≳ −0.5) practically all chaotic orbits of the
ystem exhibit spreading chaos.
From the comparison of Figs. 6 and 10 it is worth noting that

hen chaotic behaviors start appearing as H increases, they lead
nitially to localized chaos, as the nonlinearity strength should
ncrease considerably in order to permit intense nonlinear inter-
ctions, which eventually lead to energy spreading and delocal-
zation. Furthermore, we see that single site excitations leading to
haos appear for smaller energies when W is smaller (i.e. larger
ocalization length of NMs permits more mode-mode interactions
n the presence of nonlinearity), and we also observe higher
ercentages of localized chaos for W = 4 (brown curves in Fig. 6).
n the other hand, in the case of single mode excitations (Fig. 10)
e again see a slightly higher percentage of localized chaos for
mall H values, but eventually the dynamics is characterized by
preading chaotic behaviors for log10 H ≳ −1.2, as the energy

ecomes high enough to induce strong nonlinear effects. r

8

Fig. 11. Time evolution of the reinitialized GALI2(t) of a representative orbit in
the strong chaos regime of the DKG model (1) with W = 3, L = 37, β = 1/4
and H = 3.7.

4. Weak and strong chaos spreading regimes

In the previous section, the GALI2 method proved to be a very
efficient and reliable tool for investigating the changes in the
dynamical behavior of the DKG model as the system approaches
its linear limit. Here we will also use this index to study the
characteristics of chaos for strong enough nonlinearities in the
weak and strong chaos spreading regime [14,37,41].

In [48,59] it was shown that, as an initially localized wave-
packet spreads, in both the weak and the strong chaos regimes,
it becomes less chaotic without showing any signs of a crossover
to regular dynamics (at least up to the largest time scales reached
by the performed numerical simulations). This behavior was es-
tablished by the time evolution of the system’s ftmLCE (8), which
showed a power law decrease, Λ1 ∝ taΛ with aΛ ≈ −0.25 (aΛ ≈

−0.3) for the weak (strong) chaos regime. The fact that aΛ attains
constant values, which are different from the aΛ = −1 observed
in the case of regular motion (see e.g. [73]), clearly indicates
that the dynamics remain always chaotic. A characteristic time
scale quantifying the time needed for the system to show its
chaotic nature is obtained through the so-called ‘Lyapunov time’
TΛ = Λ−1

1 (see e.g. [73]). For the weak and strong chaos cases the
Lyapunov time is

TΛ(t) =
1

Λ1(t)
∝

1
taΛ

=

{
t 0.25, for weak chaos,

t 0.3, for strong chaos.
(17)

This equation clearly denotes that the system becomes less
chaotic as time grows since TΛ grows.

We can also use GALI2 in order to define a characteristic time
scale of chaos, by following the procedure developed in [117]. To
do so, we start the GALI2 computation by considering two random
orthonormal deviation vectors ŵ1(0), ŵ2(0) so that GALI2(0) = 1.
Then, whenever GALI2(t) becomes less than a very small value (in
our case we set this value to be GALI2 = 10−8) we reinitialize its
computation by substituting the current deviation vectors ŵ1(t)
and ŵ2(t) with the initially used pair ŵ1(0), ŵ2(0), setting in this
way GALI2(t) = 1. Thereafter, we let these vectors develop under
the current dynamics and follow again the evolution of GALI2.

In Fig. 11 we present the time evolution of the reinitialized
ALI2(t) for a representative case with parameters W = 3, L =

7, β = 1/4 and H = 3.7 belonging in the strong chaos regime.
s we have already explained chaotic behavior is characterized by
he exponential decay of GALI2 [see Eq. (15)]. Therefore, the time
G needed for the GALI2 to become ≤ 10−8 can be considered as
n indicator of the system’s chaoticity strength. From the results
f Fig. 11 it becomes evident that TG grows as time increases (the
ime difference between successive reaches of GALI2 at GALI2 =

0−8 augments), a clear indication that the dynamics becomes
ess chaotic.

In [117] this procedure was implemented in order to identify

egular and chaotic epochs in the evolution of orbits in a time
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Fig. 12. Average (over 100 disorder realizations) reinitialization time TG plotted
gainst (a) the number f of reinitializations of GALI2 and (b) the integration time
of the DKG system (1) for the weak chaos cases A (blue curves) and B (black
urves), as well as the strong chaos cases C (red curves) and D (green curves)
see text for more details). The straight black lines in (b) guide the eye for slopes
.25 (dashed line) and 0.3 (solid line). (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this
rticle.)

ependent Hamiltonian system, as in such systems the nature
f orbits can be altered during their evolution. On the other
and, in autonomous Hamiltonian systems these alternations
annot happen as and orbit is either regular or chaotic (maybe
eakly chaotic or sticky, as is called sometimes, but nevertheless
haotic). So what is the point of implementing this GALI2 reini-
ialization procedure in the DKG model which is an autonomous
ystem? Although Hamiltonian (1) is an autonomous model of
degrees of freedom the initial excitation of only L (L ≪ N)

ites at the center of the lattice, as well as the subsequent en-
rgy spreading, which extends to more and more sites (with
ecreasing energy per excited site as the total energy remains
ixed while the number of excited sites increases in time) without
eaching the boundaries of the lattice (i.e. without exciting all
he N degrees of freedom), means that in practice we have a
onservative Hamiltonian system with an increasing number of
ctive degrees of freedom. For this reason we encounter cases
f chaotic motion whose chaoticity decrease as time grows. Such
ases are described by a power law decrease of the related ftmLCE
1 (8), which is different from the one (Λ1 ∝ t−1) observed in

he case of regular motion. Thus, the process depicted in Fig. 11
an be used for achieving an alternative way of quantifying the
ecrease of the system’s chaoticity, through the capture of the
otential changes in the reinitialization time TG. A decreasing
G(t) would imply that the system becomes more chaotic, while
n increasing TG(t), as is the case in Fig. 11, signifies that the
ystem becomes less chaotic.
In Fig. 12 we present average (over 100 disorder realizations)

esults (⟨TG⟩) for the evolution of the GALI2 reinitialization time TG
or two weak chaos and two strong chaos cases. More specifically
e consider the weak chaos cases of Hamiltonian (1) withW = 3,
= 1/4, L = 37, H = 0.37 (case A) and W = 4, β = 1/4,

L = 1, H = 0.4 (case B), as well as the strong chaos cases W = 2,
β = 1/4, L = 83, H = 8.3 (case C), and W = 3, β = 1/4,
L = 37, H = 3.7 (case D). We note that all these cases have
already been presented in [59] where the were named W1K (case
A), W2K (case B), S1K (case C) and S2K (case D).

In Fig. 12(a) we plot the average value ⟨TG⟩ as a function of
the number f of reinitializations of GALI2, while in Fig. 12(b) ⟨TG⟩
is plotted with respect to the actual time t . Results for the two
weak chaos cases and the two strong chaos arrangements are
similar, indicating that the behavior of ⟨TG⟩ does not depend on
the individual cases but it is related to the particular dynamical
regime. The results of Fig. 12 show a clear distinction between
the weak and strong chaos cases, as in the former ⟨TG⟩ attain
much higher values, indicating that the system is less chaotic,
9

as it requires more time to show clear signs of chaoticity. This
difference is also an indirect validation of the appropriateness
of the terms ‘weak’ and ‘strong chaos regimes’ used to describe
the two dynamical behaviors. In Fig. 12(a) we see that, as the
number f of GALI2 reinitializations grow, ⟨TG⟩ exhibits a slow, but
consistent increase indicating that the chaoticity of the system
decreases with time. Furthermore, ⟨TG⟩ remains finite for the
entire duration of the simulations, showing that the dynamics of
the system does not pass to regular behavior.

The results of Fig. 12(b) clearly suggest that the growth of ⟨TG⟩
in time can be described by a power law of the form ⟨TG⟩ ∝ taG .
Actually fitting with straight lines the results of Fig. 12(b) we get
aG = 0.246 ± 0.005 (Case A), aG = 0.250 ± 0.001 (Case B),
aG = 0.298 ± 0.006 (Case C) and aG = 0.299 ± 0.007 (Case
D). It is worth noting that the power law dependencies of TΛ(t)
(17) approximate quite well the time evolution of ⟨TG⟩, both for
the weak [dashed line in Fig. 12(b)] and the strong chaos case
[continuous line in Fig. 12(b)], indicating that ⟨TG⟩(t) ∝ TΛ(t),
and suggesting that the GALI2 reinitialization time can be used to
define a characteristic chaoticity time scale for the DKG system.

5. Summary and conclusions

We investigated the chaotic behavior of the 1D DKG model (1)
for various values of its total energy H (which plays the role of the
nonlinearity strength parameter) and its disorder strength W . We
performed extensive numerical simulations of the propagation
of single site and single mode excitations and obtained average
results over 100 disorder realizations in each parameter setting.
In our investigations we implemented the GALI2 (12) chaos detec-
tion method to efficiently and accurately determine the chaotic
nature of the produced wave-packets, while the evaluation of
their second moment m2 (3) and participation number P (4)
helped us specify the localized or expanding behavior of energy
excitations.

Based on these computations we were able to establish the
probabilistic nature [39,45,46,50] of the appearance of chaotic
or regular behaviors when the system’s nonlinearity decreases,
leading the DKG model closer to its linear limit. We showed that
below some small, but not negligible, energy threshold all initial
conditions lead to regular motion (at least up to the considered
final integration times of 109 time units). This means that below
that energy value the multidimensional phase space of the DKG
model is covered almost completely by invariant tori and the
portion of chaotic regions is practically negligible, if at all existing.
In addition, there exists a higher energy threshold above which
all considered initial conditions and system arrangements lead
to a chaotic wave-packet spreading. Both these energy thresh-
olds depend on the type of the initial excitation, being higher
for single mode excitations. This discrepancy appears because
chaos is introduced by the nonlinear interaction of excited NMs,
something which happens with greater difficulty when only one
NM is initially excited, as the nonlinearity has to be significantly
strong in order to lead to a considerable interaction between
NMs, and consequently to energy spreading. On the other hand, a
single site excitation excites from the beginning of the evolution
more than one NMs and thus, a smaller energy is needed to
make the interaction of these excited modes significant enough
to introduce chaotic dynamics and to permit the delocalization of
the wave-packet.

An important outcome of our study was the distinction of the
chaotic cases to two different categories of dynamical behaviors,
namely cases leading to chaotic localization and cases resulting
to chaotic spreading of energy, as was done for example in [60]
for a strongly disordered lattice. We showed that, as we move
away from the linear system (when energy grows), chaotic dy-
namics becomes relevant for the DKG model and localized chaos
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revails. In such cases, a few lattice sites are excited, performing
localized chaotic motion without any diffusion of energy to the
ther degrees of freedom and oscillators taking place. This is a
henomenon similar to what is called ‘stable chaos’ in dynamical
stronomy [118–120] where in models of Solar System dynamics
t was found that in cases of chaotic motion, different degrees
f freedom behave very differently so that diffusion of motion is
etected in some of them, while others seem to be insensitive to
he dynamics. We also found that the percentage of chaotic orbits
xhibiting localized chaos for small H values is larger for single
ite excitations, while both single site and single mode excitations
ead to spreading chaos as H increases.

A main advantage of the GALI2 method over the computation
f the ftmLCE (8) is its ability to identify chaos much more clearly.
his happens because when chaotic behavior appears the index
ends exponentially fast to zero (something which can be easily
dentified numerically), while the ftmLCE starts showing signs of
eviation from the power law Λ1(t) ∝ t−1, which characterizes

regular motion. This deviation is more difficult to be recognized
as typically, it would require the inspection of the time evolution
of the index, something which is not needed for GALI2 as the
computation of its current numerical value is sufficient to identify
chaos, without any doubt.

Exploiting further the properties of the GALI2 method we
also demonstrated its ability to define a characteristic chaoticity
timescale, for the cases of the weak and strong chaos spread-
ing regimes, for which previous studies of the system’s ftmLCE
indicated a slowing down of chaotic dynamics [48,59]. An analo-
gous phenomenon was observed in [51,56], where it was shown
that this type of weakly chaotic dynamics is characterized by q-
Gaussian as opposed to Boltzmann statistics. More specifically,
registering the duration TG of the time intervals needed for the
GALI2 to become practically zero (actually ≤ 10−8), after suc-
cessive reinitializations of its value to GALI2 = 1 through the
introduction of two orthonormal deviation vectors for its com-
putation, we found that TG constantly grows, showing in this
ay the slowing down of chaotic dynamics. The TG timescale
haracterizes the strength of the chaotic process in the DKG
odel, and its increase is very well described by the power

aws TG ∝ t0.25 and TG ∝ t0.3, for, respectively, the weak and
trong chaos cases, showing exactly the same behavior with the
o-called Lyapunov time (17) [48,59]. Thus, GALI2 can be also
sed in a computationally efficient way to describe the chaotic
ature of motion of multidimensional systems, as well as in cases
here the strength of chaos changes in time (as happens in
he weak end strong chaos regimes considered here, or in time
ependent systems [117]). As a final remark let us note that,
lthough we used the GALI2 method for studying the 1D DKG
odel, we expect that the implementation of the index also in the
xtension of the model to two special dimensions will be able to
fficiently capture the slowing down of chaos (and consequently
he increase of the characteristic chaoticity time scale) observed
n [61].
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